Live Dynamics of 53BP1 Foci Following Simultaneous Induction of Clustered and Dispersed DNA Damage in U2OS Cells
نویسندگان
چکیده
Cells react differently to clustered and dispersed DNA double strand breaks (DSB). Little is known about the initial reaction to simultaneous induction of DSBs with different complexities. Here, we used live cell microscopy to analyse the behaviour of 53BP1-GFP (green fluorescence protein) foci formation at DSBs induced in U2OS cells by alpha particles, X-rays or mixed beams over a 75 min period post irradiation. X-ray-induced foci rapidly increased and declined over the observation interval. After an initial increase, mixed beam-induced foci remained at a constant level over the observation interval, similarly as alpha-induced foci. The average areas of radiation-induced foci were similar for mixed beams and X-rays, being significantly smaller than those induced by alpha particles. Pixel intensities were highest for mixed beam-induced foci and showed the lowest level of variability over time as compared to foci induced by alphas and X-rays alone. Finally, mixed beam-exposed foci showed the lowest level of mobility as compared to alpha and X-ray exposure. The results suggest paralysation of chromatin around foci containing clustered DNA damage.
منابع مشابه
Protein phosphatase 5 regulates the function of 53BP1 after neocarzinostatin-induced DNA damage.
53BP1 (p53-binding protein 1) is a conserved nuclear protein that is phosphorylated in response to DNA damage and rapidly recruited to the site of DNA double strand breaks, demonstrating its role in the early events to DNA damage and repair of damaged DNA. In this study, we used the yeast two-hybrid system to identify proteins that interact with 53BP1. Identification and characterization of 53B...
متن کامل53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin.
53BP1 protein is re-localized to the sites of DNA damage after ionizing radiation (IR) and is involved in DNA-damage-checkpoint signal transduction. We examined the dynamics of GFP-53BP1 in living cells. The protein starts to accumulate at the sites of DNA damage 2-3 minutes after damage induction. Fluorescence recovery after photobleaching experiments showed that GFP-53BP1 is highly mobile in ...
متن کاملHistone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair.
53BP1 and other DNA damage response (DDR) proteins form foci at double-strand breaks (DSBs) which promote their repair by nonhomologous end joining (NHEJ). Focal accumulation of 53BP1 depends on the specific interaction of its tandem Tudor domain with dimethylated lysine 20 in histone H4 (H4K20me2). How 53BP1 foci dynamics are regulated is unclear since H4K20me2 is highly abundant, established ...
متن کاملP53 Binding Protein 1 (53bp1) Is an Early Participant in the Cellular Response to DNA Double-Strand Breaks
p53 binding protein 1 (53BP1), a protein proposed to function as a transcriptional coactivator of the p53 tumor suppressor, has BRCT domains with high homology to the Saccharomyces cerevisiae Rad9p DNA damage checkpoint protein. To examine whether 53BP1 has a role in the cellular response to DNA damage, we probed its intracellular localization by immunofluorescence. In untreated primary cells a...
متن کاملBat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases.
The methyltransferase DOT1L methylates histone H3 at K79 to facilitate specific biological events. H3K79 dimethylation (H3K79-2Me) by DOT1L influences the DNA damage response by promoting 53BP1 recruitment to DNA damage sites; however, it is unclear if this methylation is required as 53BP1 interacts with dimethylated H4 (H4K20-2Me) with a much higher affinity. We demonstrate that H3K79-2Me, whi...
متن کامل